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Introduction

Introduction

Causal inference is a key concept in the field of Statistics, Mathematics and
Computer Science, using which we are able to determine the cause-and-effect
relationships from observational data.

For time-independent variables, such as X and Y , causality is inferred by
analyzing asymmetry in evidence for models in the directions X → Y and
Y → X.

In time-dependent data, causality is determined by combining asymmetry
with temporal precedence and accounting for lagged dependencies, often
using time-embedded causal graphs and dynamic models.
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Introduction

Causal inference in time series analysis plays a vital role in understanding the
dynamic relationships between variables over time. Unlike simple correlations, this
approach aims to uncover genuine cause-and-effect relationships, revealing the
mechanisms driving observed phenomena.

However, the complexity of interrelated variables, external influences, and
temporal dependencies makes establishing causality a challenging task. Advanced
methodologies are essential to address these intricacies and guide informed
decision-making.
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Introduction

Challenges in Time Series Causality:

Complexity arises from interdependencies among variables and external
factors.

Traditional methods may fail to address these intricacies, leading to
misinterpretations.

Requires sophisticated approaches to disentangle causal relationships.

Methodologies for Addressing Challenges:

Graphical models and recursive structures help capture dependencies.

Directed acyclic graphs (DAGs) represent causal relationships effectively.

Facilitate understanding of causal orders and dependencies.
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Introduction

Importance of Temporal Precedence:

Ensures that causes precede effects in causal analysis.

Combines temporal information with patterns of association for accuracy.

Embeds time series data within DAGs to visualize and analyze causality.

Applications and Implications:

Enhances empirical research by uncovering causal mechanisms in time series
data.

Provides a better understanding of complex systems.

Guides informed decision-making across various domains.

Ankan Kar, MCS202303 (CMI) ECETSM May 18, 2025 6 / 53



Focus of Presentation

Focus of Presentation

Focus of Presentation:

Principles of causal inference in time series analysis.

Discussion of methodologies for identifying causal relationships in time
dependent variables.

Find out Causal relation as well as the Causal strength.

Ankan Kar, MCS202303 (CMI) ECETSM May 18, 2025 7 / 53



Causal Models

Causal Models

The theory of inferred causation uses directed acyclic graphs (DAGs) to model
causal relationships between variables. Arrows in the graph indicate causality, and
by analyzing conditional independencies, we can infer the graph’s structure and
the direction of causation based on observed data.

Key concepts in this theory involve defining causal structures and models as
follows:
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Causal Models

Definition (Causal Structure in Pearl (2000) p.44)

A causal structure of a set of variables V is represented as a directed acyclic graph
(DAG) where each node corresponds to a distinct variable in V , and each link
indicates a direct functional relationship among the corresponding variables.

Definition (Causal Model in Pearl (2000) p.44)

A causal model is defined as a pair M = ⟨D,Θ⟩, consisting of a causal structure
D and a set of parameters ΘD that are compatible with D. The parameters ΘD

assign a function xi = fi(pai, ui) to each variable Xi ∈ V and a probability
measure P (ui) to each random disturbance ui, where PA denotes the parents of
Xi in D and each Ui is independently distributed according to P (ui).
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Causal Models Observational Equivalence

Observational Equivalence

Proposition (VermaPearl1990)

Two directed acyclic graphs (DAGs) (models) are observationally equivalent if and
only if they have the same skeletons and the same sets of v-structures, that is, two
converging arrows whose tails are not connected by an arrow.

- Statistical methods are limited in inferring causal directions in DAGs due to
observationally equivalent models.

- Only v-structures or causal directions creating new v-structures or cycles are
inferrable.

- Some arrow directions in a DAG cannot be uniquely determined from data.
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Causal Models Search Algorithms

PC Algorithm

Here is an algorithm that uses the Causal DAG Model to infer causal relations:

Algorithm 1 PC Algorithm

Input: Observations of a set of variables X generated from a DAG model.
Output: A pattern (DAG) compatible with the data generating DAG.
Start with a full undirected graph.
for each pair of variables (Xi, Xj) ∈ X do

Search a subset Sij ⊆ X \ {Xi, Xj} such that Xi ⊥ Xj |Sij holds.
Delete the edge between Xi and Xj .

end for
for each pair of non-adjacent variables Xi and Xj with a common neighbor Xk do

if Xk ∈ Sij then
Continue.

else
Add arrowheads pointing as Xk : (Xi → Xk ← Xj).

end if
end for
In the partially directed graph that results, orient as many of the undirected edges as possible subject to: (i)
The orientation should not create a new v-structure, (ii) The orientation should not create a directed cycle.
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Causal Models Search Algorithms

PC Algorithm at Work

Figure 1: 1Outline of PC Algorithm

1Image taken from Causal Discovery Learning causation from data using Python,
https://towardsdatascience.com/causal-discovery-6858f9af6dcb
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Causal Models Search Algorithms

The PC algorithm’s tests are designed to be consistent, meaning that as the
number of observations increases and the significance level approaches zero, the
likelihood of correctly identifying edges in the graph becomes nearly certain.

Proposition

Under the assumption of faithfulness, the PC-algorithm can consistently identify
the inferrable causal directions, i.e. for T → ∞ the probability of recovering the
inferrable causal structure of the data generating causal model converges to one.
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Causal Models Search Algorithms

Greedy Search Algorithm

Here is an another algorithm that is used to infer causal relation using causal DAG
model:

Algorithm 2 Greedy Search Algorithm

Input: Observations of a set of variables X generated from a DAG model.
Output: A pattern (DAG) compatible with the data generating DAG.
Step 1: Start with a DAG A0.
Step 2: Calculate the score of the DAG according to BIC/AIC/likelihood criterion.
Step 3: Generate the local neighbor DAGs by either adding, removing, or reversing an edge of the network
A0.
Step 4: Calculate the scores for the local neighbor DAGs. Choose the one with the highest score as An.
if the highest score is larger than that of A0 then

Update A0 with An and go to Step 2.
else

Stop and output A0.
end if

It’s important to recognize that a causal model functions as a statistical model. When the score used in the
greedy search algorithm is based on a consistent model selection criterion, such as the Bayesian Information
Criterion (BIC), the algorithm will reliably recover the inferable causal directions, assuming that the search
space encompasses the true directed acyclic graph (DAG). BIC is a method that helps to identify the
best-fitting model while penalizing for the number of parameters to avoid overfitting.
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Time Series Causal Models

Time Series Causal Model

DAGs and Recursive Structural Models

If an n-dimensional variable X is jointly normally distributed, a linear causal
model for X is equivalent to a linear recursive structural equation model (SEM).
In this framework, each variable is defined as a function of its parent variables,
represented by the equation:

xj =

j−1∑
k=1

ajkxk + uj for j = 1, 2, . . . , n

Here, xj is the j-th variable, ajk are coefficients showing the causal influence of
parent variables xk, and uj is a normally distributed error term capturing other
influences.
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Time Series Causal Models

We summarize this equivalence in the following proposition.

Proposition

If a set of variables X are jointly normal X ∼ N(0; Σ), a linear causal model for
X can be equivalently formulated as a linear recursive structural equation model
(SEM) that is represented by a lower triangular coefficient matrix A with ones on
the principal diagonal. Any nonzero element in this coefficient matrix, say αjk,
corresponds to a directed edge from variable k to variable j.

A =


1 0 · · · 0
α21 1 · · · 0
...

...
. . .

...
αn1 αn2 · · · 1

 =


1 0 · · · 0

−a21 1 · · · 0
...

...
. . .

...
−an1 −an2 · · · 1


where A is the triangular decomposition matrix of Σ with AΣA′ = Λ and Λ is a
diagonal matrix.
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Time Series Causal Models

TSCM

The linear causal model is designed for independent data, but economic time
series data are inherently dependent.

Treat N time series, each with T observations, as realizations of NT random
variables.

These random variables can be integrated into a larger recursive structural
equation model.

Assuming the elements of the multivariate time series Xit (where
i = 1, 2, . . . , N and t = 1, 2, . . . , T ) are jointly normally distributed.

Apply Proposition 2.2 to state that a causal model for the multivariate time
series is a linear recursive structural model encompassing all NT components.
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Time Series Causal Models

In this context, temporal information dictates a natural causal order, so the
recursive structural model must respect this temporal sequence. We can express
this recursive system as:

A11 0 · · · 0
A21 A22 · · · 0
...

...
. . .

...
AT1 AT2 · · · ATT



X1

X2

...
XT

 =


ϵ1
ϵ2
...
ϵT


Here, ϵt ∼ N(0, D) represents a vector of independent residuals, where D is
a diagonal matrix.

Additionally, the residuals ϵt and ϵt−τ are independent.

The random vector Xt = (X1t, X2t, . . . , XNt)
′ captures the values of the

time series at time t.

This structure allows us to model the dependencies among time series while
respecting the temporal order of the data.
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Time Series Causal Models

Due to the limitation of having only one observation at each time point, the
recursive system has too many parameters for effective statistical analysis.

To make the system statistically manageable, reasonable constraints must be
imposed on its parameters.

Three key assumptions:

Temporal Causal Constraint: Causal relationships between variables remain
consistent over time.
Time-Invariant Causal Structure Constraint: The causal structure at
different time points is the same.
Time-Finite Causal Influence Constraint: A variable Xt can only influence
Xt+τ if τ ≤ p, where p is a finite integer.
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Time Series Causal Models

By applying these constraints, we can rewrite the linear recursive system for p = 2
as below. 

A0 0 · · · · · · 0
A1 A0 0 · · · 0
A2 A1 A0 0 · · · 0

0
. . .

. . .
. . .

. . .
...

... 0 A2 A1 A0 0
0 · · · 0 A2 A1 A0




X1

X2

...
XT−1
XT

 =


ϵ1
ϵ2
...

ϵT−1
ϵT



The parameter matrices A1, A2, . . . , Ap in the t-th row indicate the causal
influence of Xt−1, . . . , Xt−p on Xt.

A0 represents the contemporaneous causal influences among the elements of
Xt.

The time-finite constraint ensures that all parameter sub-matrices to the left
of Ap are zero in each row.

The causal model represented in this way is called a Time Series Causal
Model (TSCM).
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Time Series Causal Models

Examples

Figure 2: 2Time Series Causal Model

2Image taken from Causal Discovery from Conditionally Stationary Time Series, arXiv:
https://arxiv.org/abs/2110.06257
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Time Series Causal Models

Observational Equivalence in TSCMs

Proposition

A partial Directed Acyclic Graph (DAG) has an observationally equivalent model if
there are some arrows between elements of Xt that satisfy the following two
conditions:

The lagged parents of the connected elements of Xt are the same

The change of the arrow directions will not lead to a new v-structure or a
cycle in the partial DAG

Corollary: If in a partial DAG all the elements of Xt have different lagged
parents, the partial DAG does not have an observationally equivalent model.
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Time Series Causal Models TSCM & VAR Models

Vector Autoregression (VAR) Model

A Vector Autoregression (VAR) model is a statistical method used to capture
the interdependencies between multiple time series. It extends the univariate
autoregressive (AR) model by allowing for multivariate time series, making it
useful for modeling systems where several variables evolve together over time,
such as in economics.

Next we will explain some key concepts of VAR Model.
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Time Series Causal Models TSCM & VAR Models

1. Endogenous Variables: In a VAR model, each of the variables (say,
y1,t, y2,t, . . . , yk,t) depends on its own past values (lags) and the past values of all
other variables in the system.

2. Model Structure: For a VAR model of order p (denoted as VAR(p)), the
relationship is given by:

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + et (1)

where:

yt is a k-dimensional vector of the variables at time t.

c is a vector of constants (intercepts).

A1, A2, . . . , Ap are time-invariant matrices (of size k × k) representing the
coefficients of the lagged values of the variables.

et is the error term or residuals at time t, which captures the effect of shocks
or noise.
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Time Series Causal Models TSCM & VAR Models

3. Error Terms: The error terms et have three properties:

1 The mean of et is zero, E(et) = 0.

2 The error terms are contemporaneously correlated, i.e., the covariance matrix
E(ete′t) = Ω is positive semi-definite.

3 The error terms are uncorrelated across time, meaning no serial correlation
exists: E(ete′t−k) = 0 for k ̸= 0.
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Time Series Causal Models TSCM & VAR Models

The order p in VAR(p) indicates how many lagged values of the variables are
included in the model. Choosing the right number of lags is critical for the
model’s accuracy.

I(0) (Stationary): If all variables are stationary, the model is applied
directly in levels.

I(d) (Non-stationary): If variables are non-stationary, they need to be
differenced or cointegration techniques may be used, resulting in a Vector
Error Correction Model (VECM).

In time series analysis, the notation I refers to the integrated nature of a time
series, which indicates the number of differences needed to achieve stationarity.
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Time Series Causal Models TSCM & VAR Models

Definitions

I(0): A time series that is stationary, meaning its statistical properties (such
as mean and variance) do not change over time. This allows for direct
application of models without transformations.

I(d): A time series that is non-stationary and requires differencing d times to
become stationary. For example, I(1) indicates that the series needs to be
differenced once.

Stationary series (I(0)) can be analyzed directly, providing reliable estimates
and predictions.

Non-stationary series (I(d)) often show trends or seasonality, requiring
differencing or cointegration techniques.

Stationarity is crucial for models like the Vector Error Correction Model
(VECM) to capture both short-term dynamics and long-term relationships.
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Time Series Causal Models TSCM & VAR Models

Relation of TSCM and VAR Model

Now we will discuss about the relation between TSCMs and the VAR models in
time series econometrics.

Proposition

A TSCM is a restricted structural VAR model identified by the inferred causal
relations among {Xt}Tt=1, and hence it corresponds to a restricted VAR model.

Proposition

An unconstrained VAR model corresponds to a full partial DAG such that the
TSCM does not contain any inferable causal relations except the temporal causal
orders.
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Time Series Causal Models Granger Causality in TSCM

Granger Causality

The Granger causality test is a statistical method used to determine whether
one time series (X) can predict another time series (Y). This test, introduced in
1969, checks if past values of X provide useful information in forecasting future
values of Y beyond what Y ’s past alone can predict.

Granger causality exists when including the past values of X improves
predictions of Y compared to using only Y ’s past. The test typically uses t-tests
or F-tests on the lagged values of both X and Y to determine if X contains
significant information about Y ’s future.
Granger’s concept of causality is based on two key principles:

1 The cause must occur before the effect.

2 The cause provides unique information about the future values of the effect.
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Time Series Causal Models Granger Causality in TSCM

Mathematically, Granger causality is tested by comparing the probabilities of Y ’s
future values with and without the information from X. If excluding X
significantly changes this probability, then X is said to ”Granger-cause” Y .

P[Y (t+ 1) ∈ A | I(t)] ̸= P[Y (t+ 1) ∈ A | I−X(t)] (2)

where P denotes probability, A is an arbitrary non-empty set, I(t) represents all
information available at time t, and I−X(t) is the same information excluding X.
If this condition holds, then X Granger-causes Y .
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Time Series Causal Models Granger Causality in TSCM

Granger causality is used to test if one time series (x) can predict another time
series (y). The test involves running two regressions: one using only the lagged
values of y and another that includes both lagged values of y and x. If the second
regression provides more explanatory power than the first, it suggests that x
“Granger-causes” y.
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Time Series Causal Models Granger Causality in TSCM

Testing Process
1. First, run a regression of y on its own lagged values:

yt = a0 + a1yt−1 + a2yt−2 + · · ·+ amyt−m + errort

2. Then, augment this regression by adding lagged values of x:

yt = a0 + a1yt−1 + a2yt−2 + · · ·+ amyt−m + bpxt−p + · · ·+ bqxt−q + errort

The lags for x that are individually significant and collectively improve the model’s
fit (through an F-test) are retained. If no significant lags of x are retained, we fail
to reject the null hypothesis that x does not Granger-cause y.
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Time Series Causal Models Granger Causality in TSCM

Multivariate Granger Causality
In multivariate cases, Granger causality is tested by fitting a vector autoregressive
(VAR) model to a multivariate time series X(t):

X(t) =

L∑
τ=1

AτX(t− τ) + ϵ(t)

where ϵ(t) is a white Gaussian noise vector, and Aτ are coefficient matrices. Time
series Xi Granger-causes Xj if any of the elements Aτ (j, i) for τ = 1, . . . , L is
significantly different from zero.
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Time Series Causal Models Granger Causality in TSCM

Relation of Granger Causality and TSCM

Granger causality is an important concept in time series analysis that helps us
understand whether one time series can predict another.

It measures the predictive power of one variable over another based on their past
values. In the context of a Time Series Causal Model (TSCM), we can investigate
how these relationships manifest among various time series variables.
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Time Series Causal Models Granger Causality in TSCM

Key Differences

It’s essential to distinguish between Granger causality and graphical causal
models:

Granger Causality: This focuses on the ability of one time series to predict
the future values of another time series. For example, if changes in variable
X can be used to forecast changes in variable Y , we say that X
Granger-causes Y .

TSCM: This type of model emphasizes the causal relationships among time
series variables at specific points in time. It provides a framework to explore
how these variables influence one another directly.
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Time Series Causal Models Granger Causality in TSCM

Proposition

Let Xi,t and Xj,t be two time series variables in a TSCM. Xj,t is a Granger cause
of Xi,t given other variables in the TSCM if and only if there is a directed path
from some Xj,t−s to Xi,t for s > 0 in the partial Directed Acyclic Graph (DAG)
of the TSCM.
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Time Series Causal Models Search Algorithms

Learning TSCM

In a Time Series Causal Model (TSCM), we only need to learn a partial DAG with
(p+ 1)N nodes, instead of the full DAG with TN nodes.

Lemma

Given the assumption of a causal model, an information set (joint distribution)
containing a node and its parent variables is sufficient for the PC algorithm to
connect the node to its parents and exclude non-descendants from connecting to
it.

Proposition

To learn the partial DAG with arrows into Xt, the information set including
Xt, Xt−1, . . . , Xt−p is sufficient.
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Time Series Causal Models Search Algorithms

PC Algorithm for TSCM

Here is an algorithm for discovering the causal relation between variables in a
Time Series Model.

Algorithm 3 PC Algorithm for a Partial DAG in TSCM

Input: Observations of a set of time series variables X generated from a TSCM.
Output: A partial DAG compatible with the data-generating DAG.
Step 1: Choose a reasonable p̂.
Step 2: Calculate the correlation matrix Σ = corr(Xt, Xt−1, . . . , Xt−p̂).
Step 3: Use Σ as input to obtain a DAG for (Xt, Xt−1, . . . , Xt−p̂).
Step 4: Delete all arrows and edges that do not connect at least one element of
Xt.
Step 5: Orient all edges between Xt−i and Xt with arrowheads at Xt.
Step 6: Orient all edges between elements of Xt using the rules in the PC
algorithm.
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Time Series Causal Models Search Algorithms

Greedy Search Algorithm

Now we can talk about the greedy search algorithm for the time series causal
model.

Evaluating graph scores is an alternative to uncovering the data-generating
DAG model.

For a partial DAG, the score can be based on the likelihood of the SVAR
model.

Since unconstrained models have higher likelihoods, a proper score includes a
penalty term.
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Time Series Causal Models Search Algorithms

The BIC criterion for a partial DAG of Xt is defined as:

BIC =

T∑
t=1

logL(A0, A1, . . . , Ap;Xt|Xt−1, . . . , Xt−p)− (|E|+ |V |) log(T )

Where |E| is the number of arrows heading at Xt and |V | is the number of
elements in Xt.

(|E|+ |V |) represents the number of free varying parameters in the TSCM.

The BIC criterion is a sum of the log-likelihood function and a penalty factor.

As T → ∞, the BIC criterion becomes consistent for model selection.
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Time Series Causal Models Search Algorithms

Now we can summarize this details on greedy search into the following
proposition:

Proposition

Under the assumption of TSCM, the BIC criterion is a consistent score, such that
the probability of identifying the true model converges to 1 as T → ∞, assuming
the search space covers the true model.
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Our Work & Results

Our Work & Results

Our work consists mainly of four parts as follows:

1 Random Forest Model with Feature Selection Using Causality

2 Causal DAG creation

3 Convolutional Neural Network (CNN) Model for ECG Image Classification

4 Causal Aware CNN Model for ECG Image Classification

The results will be discussed in the following slides.
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Our Work & Results Random Forest Model with Feature Selection Using Causality

Random Forest Model with Feature Selection Using
Causality

The model structure is as follows:

The top 25 features are selected using Granger Causality.

Those features are used for training the Random Forest Model.

To further improve performance, we conducted a comprehensive
hyperparameter tuning process using grid search with 5-fold cross-validation.
The grid included variations over the number of trees (n estimators), tree
depth (max depth), minimum samples required to split and at leaves, and
feature subset selection strategies.
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Our Work & Results Random Forest Model with Feature Selection Using Causality

AUROC of our Causal RF model

Figure 3: Optimized ROC Curve of Random Forest Classifier (AUROC = 0.864)
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Our Work & Results Random Forest Model with Feature Selection Using Causality

AUROC of the Benchmark RF model

Figure 4: ROC Performance Comparison with ECG-SMART, Clinical Experts, and
Commercial ECG Systems
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Our Work & Results Causal DAG Creation

Causal DAG Creation

Figure 5: Causal DAG using BIC criterion based on all 74 features.
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Our Work & Results Causal DAG Creation

Figure 6: Causal DAG using BIC criterion based on the selected 25 features.
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Our Work & Results CNN Model for ECG Classification

CNN Model for ECG Classification

We implemented a normal CNN model as described in Figure 7.

Figure 7: Ordinary CNN Model 3

This model got an accuracy of 43.5%.

3Image is taken from 6
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Our Work & Results Causal Aware CNN Model for ECG Classification

Causal Aware CNN Model for ECG Classification

Figure 8: Causal Aware CNN Model 4

4Image is taken from 6
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Our Work & Results Causal Aware CNN Model for ECG Classification

We checked the performance of CA-CNN model using two methods explained
below:

1 Input to the Fully Connected Layer is both the Causal Feature Map and the
data samples. Then the CA CNN model achieved a test accuracy of
approximately 77.48%, indicating way better performance than the ordinary
CNN.

2 Input to the Fully Connected Layer is only the Causal Feature Map and not
the data samples. Then the CA CNN model achieved a test accuracy of
approximately 54.31%, still indicating better performance than the ordinary
CNN.
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Conclusion

Conclusion

This work demonstrates that combining causal inference with machine learning,
whether through feature selection or architectural design, can lead to models that
are both more interpretable and more effective. Further directions may include
exploring richer causal mechanisms, incorporating temporal dependencies, and
applying these techniques to other domains of medical imaging for classification
and future prediction as well.
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